3,702 research outputs found

    Time, institutional support and quality of decision making in child protection:A cross-country analysis

    Get PDF
    This paper examines perceptions of time and institutional support for decision making and staff confidence in child welfare staffs ultimate decisions – examining differences and similarities between and within the service-oriented Nordic countries (Norway and Finland) and the risk-oriented Anglo-American countries (England and California). The study identifies a high degree of work pressure across all the countries, lines of predominantly vertical institutional support and relatively high confidence in decisions. Finland stands out with higher perceived work pressure and with a horizontal support line, whereas England stands out with workers having a lower degree of confidence in their own and others’ decisions

    Van der Waals Frictional Drag induced by Liquid Flow in Low- Dimensional Systems

    Get PDF
    We study the van der Waals frictional drag force induced by liquid flow in low-dimensional systems (2D and 1D electron systems, and 2D and 1D channels with liquid). We find that for both 1D and 2D systems, the frictional drag force induced by liquid flow may be several orders of magnitude larger than the frictional drag induced by electronic current.Comment: 10 pages, 4 figure

    The quantum-classical crossover of a field mode

    Get PDF
    We explore the quantum-classical crossover in the behaviour of a quantum field mode. The quantum behaviour of a two-state system - a qubit - coupled to the field is used as a probe. Collapse and revival of the qubit inversion form the signature for quantum behaviour of the field and continuous Rabi oscillations form the signature for classical behaviour of the field. We demonstrate both limits in a single model for the full coupled system, for states with the same average field strength, and so for qubits with the same Rabi frequency.Comment: 6 pages, 3 figures (in this version the figures, text and references have all been expanded

    High-sensitivity force measurement using entangled probes

    Full text link
    We show the possibility to improve the measurement sensitivity of a weak force by using two meters in an entangled state. This latter can be achieved by exploiting radiation pressure effects.Comment: ReVTeX file, 11 pages, 2 eps figure

    Succinct Indexable Dictionaries with Applications to Encoding kk-ary Trees, Prefix Sums and Multisets

    Full text link
    We consider the {\it indexable dictionary} problem, which consists of storing a set S{0,...,m1}S \subseteq \{0,...,m-1\} for some integer mm, while supporting the operations of \Rank(x), which returns the number of elements in SS that are less than xx if xSx \in S, and -1 otherwise; and \Select(i) which returns the ii-th smallest element in SS. We give a data structure that supports both operations in O(1) time on the RAM model and requires B(n,m)+o(n)+O(lglgm){\cal B}(n,m) + o(n) + O(\lg \lg m) bits to store a set of size nn, where {\cal B}(n,m) = \ceil{\lg {m \choose n}} is the minimum number of bits required to store any nn-element subset from a universe of size mm. Previous dictionaries taking this space only supported (yes/no) membership queries in O(1) time. In the cell probe model we can remove the O(lglgm)O(\lg \lg m) additive term in the space bound, answering a question raised by Fich and Miltersen, and Pagh. We present extensions and applications of our indexable dictionary data structure, including: An information-theoretically optimal representation of a kk-ary cardinal tree that supports standard operations in constant time, A representation of a multiset of size nn from {0,...,m1}\{0,...,m-1\} in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports (appropriate generalizations of) \Rank and \Select operations in constant time, and A representation of a sequence of nn non-negative integers summing up to mm in B(n,m+n)+o(n){\cal B}(n,m+n) + o(n) bits that supports prefix sum queries in constant time.Comment: Final version of SODA 2002 paper; supersedes Leicester Tech report 2002/1

    Single photon quantum non-demolition in the presence of inhomogeneous broadening

    Get PDF
    Electromagnetically induced transparency (EIT) has been often proposed for generating nonlinear optical effects at the single photon level; in particular, as a means to effect a quantum non-demolition measurement of a single photon field. Previous treatments have usually considered homogeneously broadened samples, but realisations in any medium will have to contend with inhomogeneous broadening. Here we reappraise an earlier scheme [Munro \textit{et al.} Phys. Rev. A \textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an alternative mode of operation that is preferred in an inhomogeneous environment. We further show the implications of these results on a potential implementation in diamond containing nitrogen-vacancy colour centres. Our modelling shows that single mode waveguide structures of length 200μm200 \mu\mathrm{m} in single-crystal diamond containing a dilute ensemble of NV^- of only 200 centres are sufficient for quantum non-demolition measurements using EIT-based weak nonlinear interactions.Comment: 21 pages, 9 figures (some in colour) at low resolution for arXiv purpose

    Fast Arc-Annotated Subsequence Matching in Linear Space

    Full text link
    An arc-annotated string is a string of characters, called bases, augmented with a set of pairs, called arcs, each connecting two bases. Given arc-annotated strings PP and QQ the arc-preserving subsequence problem is to determine if PP can be obtained from QQ by deleting bases from QQ. Whenever a base is deleted any arc with an endpoint in that base is also deleted. Arc-annotated strings where the arcs are ``nested'' are a natural model of RNA molecules that captures both the primary and secondary structure of these. The arc-preserving subsequence problem for nested arc-annotated strings is basic primitive for investigating the function of RNA molecules. Gramm et al. [ACM Trans. Algorithms 2006] gave an algorithm for this problem using O(nm)O(nm) time and space, where mm and nn are the lengths of PP and QQ, respectively. In this paper we present a new algorithm using O(nm)O(nm) time and O(n+m)O(n + m) space, thereby matching the previous time bound while significantly reducing the space from a quadratic term to linear. This is essential to process large RNA molecules where the space is likely to be a bottleneck. To obtain our result we introduce several novel ideas which may be of independent interest for related problems on arc-annotated strings.Comment: To appear in Algoritmic

    Quantum Computation by Communication

    Full text link
    We present a new approach to scalable quantum computing--a ``qubus computer''--which realises qubit measurement and quantum gates through interacting qubits with a quantum communication bus mode. The qubits could be ``static'' matter qubits or ``flying'' optical qubits, but the scheme we focus on here is particularly suited to matter qubits. There is no requirement for direct interaction between the qubits. Universal two-qubit quantum gates may be effected by schemes which involve measurement of the bus mode, or by schemes where the bus disentangles automatically and no measurement is needed. In effect, the approach integrates together qubit degrees of freedom for computation with quantum continuous variables for communication and interaction.Comment: final published versio

    Polarized cell motility induces hydrogen peroxide to inhibit cofilin via cysteine oxidation

    Get PDF
    Mesenchymal cell motility is driven by polarized actin polymerization [1]. Signals at the leading edge recruit actin polymerization machinery to promote membrane protrusion, while matrix adhesion generates tractive force to propel forward movement. To work effectively, cell motility is regulated by a complex network of signaling events that affect protein activity and localization. H2O2 has an important role as a diffusible second messenger [2], and mediates its effects through oxidation of cysteine thiols. One cell activity influenced by H2O2 is motility [3]. However, a lack of sensitive and H2O2-specific probes for measurements in live cells has not allowed for direct observation of H2O2 accumulation in migrating cells or protrusions. In addition, the identities of proteins oxidized by H2O2 that contribute to actin dynamics and cell motility have not been characterized. We now show, as determined by fluorescence lifetime imaging microscopy, that motile cells generate H2O2 at membranes and cell protrusions and that H2O2 inhibits cofilin activity through oxidation of cysteines 139 (C139) and 147 (C147). Molecular modeling suggests that C139 oxidation would sterically hinder actin association, while the increased negative charge of oxidized C147 would lead to electrostatic repulsion of the opposite negatively charged surface. Expression of oxidation-resistant cofilin impairs cell spreading, adhesion, and directional migration. These findings indicate that H2O2 production contributes to polarized cell motility through localized cofilin inhibition and that there are additional proteins oxidized during cell migration that might have similar roles
    corecore